Byzantine Agreement with Interval Validity

Darya Melnyk and Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

- Fully connected graph
- Synchronous communication

Distributed Auction with Byzantine Parties \bigcirc 0 1500\$ 1250\$ 1350\$ 20\$ 1000\$ 1200\$ 2000\$

While Byzantine parties...

- lie about inputs
- pretend to have different bids
- know all other bids
- collaborate
- know the protocol
- are unpredictable

What's the fair price?

• Remove too high bids

- Remove too high bids
- Remove loo low bids

Interval Validity

we can accept all bids which are at most t/2 positions away from the wanted bid.

Want ...

a synchronous Byzantine agreement algorithm that satsfies

Interval Validity

- Byzantine Agreement on each bid
 - Can be done in t+1 rounds exchanging O(n^4) messages

• Choose the k-th smallest value

- Choose the k-th smallest value
 - Choose the median between the k-th smallest and the (k+t) smallest value

- Choose the k-th smallest value
 - Choose the median between the k-th smallest and the (k+t) smallest value

- Choose the k-th smallest value
 - Choose the median between the k-th smallest and the (k+t) smallest value

10 bids, 3 Byzantine, look for the 4th smallest

10 bids, 3 Byzantine, look for the 4th smallest

10 bids, 3 Byzantine, look for the 4th smallest

10 bids, 3 Byzantine, look for the 4th smallest

] 다 다 다 다 다 Ļ $\Box \Box \Box \Box \Box \Box$

10 bids, 3 Byzantine, look for the 4th smallest

10 bids, 3 Byzantine, look for the 4th smallest

- Byzantine Agreement on each bid
 - Can be done in **t+1** rounds exchanging **O(n^4)** messages

each bidder locally chooses an approximation for the k-th smallest value

 bidders agree on any price inside the interval of all correct bids

- each bidder locally chooses an approximation for the k-th smallest value
 - choose the median between the k-th smallest and the (k+t) smallest value

- each bidder locally chooses an approximation for the k-th smallest value
 - choose the median between the k-th smallest and the (k+t) smallest value

 bidders agree on any price inside the interval of all correct bids

- bidders agree on any price inside the interval of all correct bids
 - receive approximations from every node

- bidders agree on any price inside the interval of all correct bids
 - receive approximations from every node
 - remove too low and too high bids

- bidders agree on any price inside the interval of all correct bids
 - receive approximations from every node
 - remove too low and too high bids
 - apply King algorithm for agreement

- bidders agree on any price inside the interval of all correct bids
 - receive approximations from every node
 - remove too low and too high bids
 - apply King algorithm for agreement

t+1 rounds and O(n^3) messages

Special Cases - Minimum

10 bids, 3 Byzantine, look for minimum

Special Cases - Minimum

10 bids, 3 Byzantine, look for minimum

Special Cases – Median

13 bids, 4 Byzantine, look for the median

Special Cases – Median

13 bids, 4 Byzantine, look for the median

What did we achive?

Cow at an auction...

any real-valued agreement

Fair price...

any reasonable agreement value (also min, max, or median)

Bid close to the 4th smallest bid...

Interval Validity

