Byzantine Agreement with Interval Validity

羄

Distributed Auction

Distributed Auction

Distributed Auction

Distributed Auction

Distributed Auction

- Fully connected graph
- Synchronous communication

Distributed Auction with Byzantine Parties

While Byzantine parties...

- lie about inputs
- pretend to have different bids
- know all other bids
- collaborate
- know the protocol
- are unpredictable

What's the fair price?

Valdidity Condition

- Remove too high bids

Validity Condition

- Remove too high bids
- Remove loo low bids

Validity Condition

Validity Condition

Validity Condition

Validity Condition

Interval Validity

Given t Byzantine parties

we can accept all bids which are at most $t / 2$ positions away from the wanted bid.

Want ...

a synchronous Byzantine agreement algorithm that satsfies

Interval Validity

Naive Algorithm

- Byzantine Agreement on each bid
- Can be done in $t+1$ rounds exchanging $O\left(n^{\wedge} 4\right)$ messages

Naive Algorithm

- Choose the k-th smallest value

Naive Algorithm

- Choose the k-th smallest value
- Choose the median between the \mathbf{k}-th smallest and the ($\mathbf{k}+\mathbf{t}$) smallest value

Naive Algorithm

- Choose the k-th smallest value
- Choose the median between the \mathbf{k}-th smallest and the ($\mathbf{k}+\mathbf{t}$) smallest value

Naive Algorithm

- Choose the k-th smallest value
- Choose the median between the k-th smallest and the $(k+t)$ smallest value

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest
모뭄ㅁㅁㅁㅁㅁㅁㅁㅁㅁ

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest

Lower Bound

10 bids, 3 Byzantine, look for the 4th smallest

Naive Algorithm

- Byzantine Agreement on each bid
- Can be done in $\mathbf{t + 1}$ rounds exchanging $\mathbf{O}\left(\mathbf{n}^{\wedge} \mathbf{4}\right)$ messages

Our Algorithm

- each bidder locally chooses an approximation for the k-th smallest value
- bidders agree on any price inside the interval of all correct bids

Our Algorithm

- each bidder locally chooses an approximation for the k-th smallest value
- choose the median between the \mathbf{k}-th smallest and the (k+t) smallest value

Our Algorithm

- each bidder locally chooses an approximation for the k-th smallest value
- choose the median between the \mathbf{k}-th smallest and the $(\mathbf{k}+\mathbf{t})$ smallest value

Our Algorithm

- bidders agree on any price inside the interval of all correct bids

Our Algorithm

- bidders agree on any price inside the interval of all correct bids
- receive approximations from every node

Our Algorithm

- bidders agree on any price inside the interval of all correct bids
- receive approximations from every node
- remove too low and too high bids

Our Algorithm

- bidders agree on any price inside the interval of all correct bids
- receive approximations from every node
- remove too low and too high bids
- apply King algorithm for agreement

Our Algorithm

- bidders agree on any price inside the interval of all correct bids
- receive approximations from every node
- remove too low and too high bids
- apply King algorithm for agreement

$t+1$ rounds and $O\left(n^{\wedge} 3\right)$ messages

Special Cases - Minimum

10 bids, 3 Byzantine, look for minimum

Special Cases - Minimum

10 bids, 3 Byzantine, look for minimum

Special Cases - Median

13 bids, 4 Byzantine, look for the median

ヘ

모모모모모모모모모

Special Cases - Median

13 bids, 4 Byzantine, look for the median

What did we achive?

Cow at an auction...

Fair price...

Bid close to the 4th smallest bid...
any real-valued agreement
any reasonable agreement value (also min, max, or median)

Interval Validity

