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RAFT Protocol







Majority decisions in Paxos are leader decisions in RAFT

Leader




RAFT Protocol: four sub-problems

e Leader Election
e Terms

e Log Replication

e Consistency
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Terms

e Time from a leader election until the next leader election takes place

Leader Normal Leader
election execution election
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e A node increases its term when
— it times out
— it receives a message with a higher term



Log Replication
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Log Replication




Consistency

e followers only vote for candidates that are consistent with all their
committed log entries

e only candidates with all committed log entries have a chance to win an
election
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We did (almost) all of this...

e We followed the instructions from Diego Ongaro and John Ousterhout,
“In Search of an Understandable Consensus Algorithm”

e all server processes are independent threads and let them
e Communication runs via sockets

e For each socket listener we generated a new thread that constantly
performs a blocking socket-read

e Implemented in Python 3.6, since it provides a threading library with a fair
distributed scheduling in terms of CPU allocation

e ZeroMQ as library for asynchronous messaging



What about failures?




Link Failures




Link Failures: Policies

e send the RequestVote and the corresponding reply messages several
times

e number of times a message is sent is equal to number of terms since the
last leader was active



Link Failures: Evaluation

terms for election
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Isolation




Isolation: Policies

e |solated server is a leader

— Commit Timeout: timer for the leader when no more log entries have been
committed within a certain time interval.

e |solated server is a candidate
— Each RequestVote has to contain the LastLeaderTerm
— The server checks if its own LastLeaderTerm is higher
— If thisis true, the follower proceeds with the RequestVote as normal



Partition




Partition: Timeout Length

terms for election
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Partition: Timeout Policies

e increaseTimeoutlinear: Increase the timeout linearly, the more
split votes happen

e increaseCandidateTimeout: Adjust the timeout according to
the ratio between positive and negative votes



Partition: Comparison

terms for election
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Conclusion

e Link failures, Isolation, Partition

e Additional timers

e Small number of simulated servers

e Different interval policies may become relevant



Thank You!




