Improving RAFT When There Are
Failures

by

Christian Fluri, Darya Melnyk, Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch



RAFT Protocol







Majority decisions in Paxos are leader decisions in RAFT

Leader




RAFT Protocol: four sub-problems

e Leader Election
e Terms

e Log Replication

e Consistency



Leader Election

discovers
server with
higher term

K | \ S

q J‘"‘uA <>O
/ Follower

discovers Ca ndldate
leader




Terms

e Time from a leader election until the next leader election takes place

Leader Normal Leader
election execution election

< > <€
term 1 term 2

e A node increases its term when
— it times out
— it receives a message with a higher term



Log Replication

Leader

forward
,execute c”

"gi%,: ’

execute c

Z

! Servers

Client



Log Replication

append |

execute ©

s

/ l Leader
append
,execute c”

2,
s




Log Replication

P, '
ogi,\ @/‘w \ @ / -

HexeCute cn
appended




Log Replication




Consistency

e followers only vote for candidates that are consistent with all their
committed log entries

e only candidates with all committed log entries have a chance to win an
election



BULDING (A RAFT) WITH

...N0 SPECS

...NO FUNDING

MATCHES

...NO DEADLINE

MoNKEYUSER. .COM



We did (almost) all of this...

e We followed the instructions from Diego Ongaro and John Ousterhout,
“In Search of an Understandable Consensus Algorithm”

e all server processes are independent threads and let them
e Communication runs via sockets

e For each socket listener we generated a new thread that constantly
performs a blocking socket-read

e Implemented in Python 3.6, since it provides a threading library with a fair
distributed scheduling in terms of CPU allocation

e ZeroMQ as library for asynchronous messaging



What about failures?




Link Failures




Link Failures: Policies

e send the RequestVote and the corresponding reply messages several
times

e number of times a message is sent is equal to number of terms since the
last leader was active



Link Failures: Evaluation

terms for election

----- without ReplicaVR
with ReplicaVR

20 1
15
10 1

5 =}

0 . ' ' |

0.0 0.1 0.2 0.3 0.4

probability of a link failure

0.5



Isolation




Isolation: Policies

e |solated server is a leader

— Commit Timeout: timer for the leader when no more log entries have been
committed within a certain time interval.

e |solated server is a candidate
— Each RequestVote has to contain the LastLeaderTerm
— The server checks if its own LastLeaderTerm is higher
— If thisis true, the follower proceeds with the RequestVote as normal



Partition




Partition: Timeout Length

terms for election

----- timeout: 0.1-0.1125[s]
5.0 1 —.- timeout: 0.1-0.125[s]

~ == timeout: 0.1-0.15[s]
4.5 9 —— timeout: 0.1-0.2[s]
4.0
3.5 -
3.0 -
2.5 1
204 T -==
1.5 I i ______-——-----
1.0 - T !

0 1 2 3

number of servers cut off




Partition: Timeout Policies

e increaseTimeoutlinear: Increase the timeout linearly, the more
split votes happen

e increaseCandidateTimeout: Adjust the timeout according to
the ratio between positive and negative votes



Partition: Comparison

terms for election

74 :
----- no improvement
——- IncreaseCandidateTimeout
—-= IncreaseTimeoutLinear I
6 1 —— increaseTimeoutLinear and increaseCandidateTimeout .~
5 =
4 <
-
.-’..-r
.-""-r-
- -~
3‘ 7 _d_..-"r.rr 1-.-'.--‘
- e
. L e
,,,, e
2 —
I I I
0 1 p. 3

number of servers cut off



Conclusion

e Link failures, Isolation, Partition

e Additional timers

e Small number of simulated servers

e Different interval policies may become relevant



Thank You!




