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Majority decisions in Paxos are leader decisions in RAFT

Servers

Leader

Client



RAFT Protocol: four sub-problems

• Leader Election

• Terms

• Log Replication

• Consistency 



Leader Election

Follower Candidate

Leader

discovers 
leader

discovers 
server with 
higher term

> n/2 votes



• Time from a leader election until the next leader election takes place

• A node increases its term when 

– it times out

– it receives a message with a higher term 
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Log Replication
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Log Replication
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Consistency

• followers only vote for candidates that are consistent with all their
committed log entries

• only candidates with all committed log entries have a chance to win an 
election





We did (almost) all of this...

• We followed the instructions from Diego Ongaro and John Ousterhout, 
“In Search of an Understandable Consensus Algorithm” 

• all server processes are independent threads and let them 

• Communication runs via sockets

• For each socket listener we generated a new thread that constantly 
performs a blocking socket-read

• Implemented in Python 3.6, since it provides a threading library with a fair 
distributed scheduling in terms of CPU allocation

• ZeroMQ as library for asynchronous messaging 



What about failures?



Link Failures



Link Failures: Policies

• send the RequestVote and the corresponding reply messages several 
times

• number of times a message is sent is equal to number of terms since the 
last leader was active



Link Failures: Evaluation



Isolation
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Isolation: Policies

• Isolated server is a leader

– Commit Timeout: timer for the leader when no more log entries have been 
committed within a certain time interval. 

• Isolated server is a candidate

– Each RequestVote has to contain the LastLeaderTerm

– The server checks if its own LastLeaderTerm is higher

– If this is true, the follower proceeds with the RequestVote as normal



Partition



Partition: Timeout Length



Partition: Timeout Policies

• increaseTimeoutLinear: Increase the timeout linearly, the more
split votes happen 

• increaseCandidateTimeout: Adjust the timeout according to
the ratio between positive and negative votes



Partition: Comparison



Conclusion

• Link failures, Isolation, Partition

• Additional timers

• Small number of simulated servers

• Different interval policies may become relevant



Thank You!


