
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Improving RAFT When There Are 
Failures

Christian Fluri, Darya Melnyk, Roger Wattenhofer



RAFT Protocol

Servers
Client



Majority decisions in Paxos are...

Servers
Client



Majority decisions in Paxos are leader decisions in RAFT

Servers

Leader

Client



RAFT Protocol: four sub-problems

• Leader Election

• Terms

• Log Replication

• Consistency 



Leader Election

Follower Candidate

Leader

discovers 
leader

discovers 
server with 
higher term

> n/2 votes



• Time from a leader election until the next leader election takes place

• A node increases its term when 

– it times out

– it receives a message with a higher term 

Terms

term 1

Normal 
execution

Leader 
election

Leader 
election

term 2



Log Replication

execute c

forward 
„execute c“

Client

Servers

Leader



Log Replication

append 
„execute c“

Client

Servers

Leader



Log Replication

„execute c“ 
appended

Client

Servers

Leader



Log Replication

commit c

Servers

Leader

Client



Consistency

• followers only vote for candidates that are consistent with all their
committed log entries

• only candidates with all committed log entries have a chance to win an 
election





We did (almost) all of this...

• We followed the instructions from Diego Ongaro and John Ousterhout, 
“In Search of an Understandable Consensus Algorithm” 

• all server processes are independent threads and let them 

• Communication runs via sockets

• For each socket listener we generated a new thread that constantly 
performs a blocking socket-read

• Implemented in Python 3.6, since it provides a threading library with a fair 
distributed scheduling in terms of CPU allocation

• ZeroMQ as library for asynchronous messaging 



What about failures?



Link Failures



Link Failures: Policies

• send the RequestVote and the corresponding reply messages several 
times

• number of times a message is sent is equal to number of terms since the 
last leader was active



Link Failures: Evaluation



Isolation

?



Isolation: Policies

• Isolated server is a leader

– Commit Timeout: timer for the leader when no more log entries have been 
committed within a certain time interval. 

• Isolated server is a candidate

– Each RequestVote has to contain the LastLeaderTerm

– The server checks if its own LastLeaderTerm is higher

– If this is true, the follower proceeds with the RequestVote as normal



Partition



Partition: Timeout Length



Partition: Timeout Policies

• increaseTimeoutLinear: Increase the timeout linearly, the more
split votes happen 

• increaseCandidateTimeout: Adjust the timeout according to
the ratio between positive and negative votes



Partition: Comparison



Conclusion

• Link failures, Isolation, Partition

• Additional timers

• Small number of simulated servers

• Different interval policies may become relevant



Thank You!


